REVIEW ARTICLE

Transglutaminase 2: a multi-functional protein in multiple subcellular compartments

Donghyun Park · Sun Shim Choi · Kwon-Soo Ha

Received: 9 November 2009/Accepted: 23 January 2010/Published online: 11 February 2010 © Springer-Verlag 2010

Abstract Transglutaminase 2 (TG2) is a multifunctional protein that can function as a transglutaminase, G protein, kinase, protein disulfide isomerase, and as an adaptor protein. These multiple biochemical activities of TG2 account for, at least in part, its involvement in a wide variety of cellular processes encompassing differentiation, cell death, inflammation, cell migration, and wound healing. The individual biochemical activities of TG2 are regulated by several cellular factors, including calcium, nucleotides, and redox potential, which vary depending on its subcellular location. Thus, the microenvironments of the subcellular compartments to which TG2 localizes, such as the cytosol, plasma membrane, nucleus, mitochondria, or extracellular space, are important determinants to switch on or off various TG2 biochemical activities. Furthermore, TG2 interacts with a distinct subset of proteins and/or substrates depending on its subcellular location. In this review, the biological functions and molecular interactions of TG2 will be discussed in the context of the unique environments of the subcellular compartments to which TG2 localizes.

D. Park · K.-S. Ha (☒)
Department of Molecular and Cellular Biochemistry,
Vascular System Research Center,
Kangwon National University School of Medicine,
Chuncheon, Kangwon-do 200-701, Republic of Korea
e-mail: ksha@kangwon.ac.kr

S. S. Choi Department of Molecular and Medical Biotechnology, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701, South Korea $\begin{tabular}{ll} \textbf{Keywords} & TG2 \cdot Subcellular \ localization \cdot \\ Subcellular \ compartment \cdot Organelle \cdot Transglutaminase \cdot \\ G_h \cdot Protein \ disulfide \ isomerase \cdot Kinase \\ \end{tabular}$

Introduction

Transglutaminase 2 (TG2), also known as tissue transglutaminase or transglutaminase C, is a member of the transglutaminase (TGase) family. TG2 catalyzes protein cross-linking via transamidation of glutamine residues to lysine residues in a Ca²⁺-dependent manner (Lorand and Graham 2003; Facchiano and Facchiano 2009). The crosslinking generates proteolytically resistant γ-glutamyl-εlysine bonds. The resulting cross-linked proteins often have high-molecular masses. Besides its classical protein crosslinking activity, TG2 possesses several other biochemical functions. TG2 can function as a G protein (high-molecular weight GTP-binding protein), designated G_h, by mediating α1-adrenergic receptor signaling in rat liver membranes (Nakaoka et al. 1994). TG2 also has protein disulfide isomerase (PDI) (Hasegawa et al. 2003), protein kinase (Mishra and Murphy 2004; Mishra et al. 2007), and DNA nuclease activities (Takeuchi et al. 1998). In addition to its various enzymatic activities, TG2 interacts directly with fibronectin, integrins, and syndecan, therefore, mediating cell-extracellular matrix (ECM) interactions (Telci et al. 2008; Collighan and Griffin 2009).

This multifunctional protein is expressed ubiquitously and abundantly, and is implicated in a variety of cellular processes, such as differentiation, cell death, inflammation, cell migration, and wound healing (reviewed in Fesus and Piacentini 2002; Lorand and Graham 2003; Fesus and Szondy 2005; Ientile et al. 2007; Collighan and Griffin 2009; Sarang et al. 2009). Beyond its functional diversity,

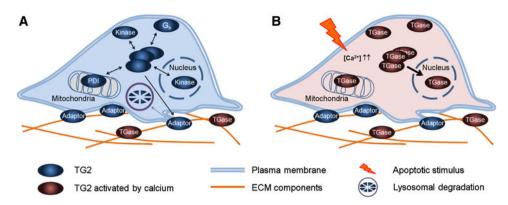
TG2 has both pro- and anti-apoptotic functions (Fesus and Szondy 2005). To reconcile seemingly contradictory sets of observations, several parameters have been considered (Fesus and Szondy 2005), including cell types (Shin et al. 2004), the type of cell death inducers (Tucholski and Johnson 2002), the intensity of a stimulus (Jeong et al. 2009), and TG2-splice variants (Monsonego et al. 1997; Antonyak et al. 2006). Subcellular localization of TG2 was suggested as another important determinant of its functions because targeting TG2 to different compartments resulted in different effects on apoptosis (Milakovic et al. 2004). With a general acceptance of the idea that TGase and GTPase activities are modulated by the local environment (Lai et al. 1998), TG2 is believed to create distinct molecular interactions in different subcellular compartments, which in turn exert diverse effects on cellular physiology.

TG2 Structure and regulation by small molecules

Human TG2 has been crystallized in two different conformations with GDP or a pentapeptide inhibitor (Liu et al. 2002; Pinkas et al. 2007). Although the two structures represent the two extremes of movement, both structures clearly showed that the monomer has four distinct domains: an N-terminal β -sandwich domain, a transamidation catalytic core, and two C-terminal barrels (Liu et al. 2002; Pinkas et al. 2007). Three-dimensional structures of TG2 suggest a molecular basis for reciprocal regulation by calcium and nucleotides (ATP and GTP), key regulators of various enzymatic activities of TG2 (Table 1). Calcium activates TGase activity by inducing a conformational change that increases the interdomain distance between the

catalytic domain and the two C-terminal barrel domains, consequently exposing the active site of the TGase to the substrate (Pinkas et al. 2007). Calcium is either inhibitory or indispensible for the Gh, PDI, and kinase activities of TG2, whereas calcium is essential for the TGase activity (Table 1; Fig. 1). In contrast, GTP binding likely stabilizes the closed conformation, therefore negatively regulating the TGase activity and positively regulating the G_h activity of TG2 (Nakaoka et al. 1994; Iismaa et al. 2000; Begg et al. 2006b). In addition to its GTPase activity, TG2 also hydrolyzes ATP in a site distinct from that of GTP hydrolysis (Lai et al. 1998). Mg-ATP binds TG2 at a 3-fold greater steady-state affinity than Mg-GTP and is hydrolyzed at a similar rate (Lai et al. 1998). In contrast to Mg-GTP, Mg-ATP does not inhibit the TGase activity, but rather inhibits GTP hydrolysis (Lai et al. 1998). Inhibition of the GTPase activity by ATP, if GTP binding is not affected, could potentiate the Gh activity (Johnson and Terkeltaub 2005). In addition to calcium and nucleotides, sphingosylphosphocholine (lyso-SM) and nitric oxide are able to modulate TG2 TGase activity (Lai et al. 1997; Bernassola et al. 1999; Rossi et al. 2000). The presence of lyso-SM reduced the calcium concentration required for TGase activation from 10 to 160 µM (Lai et al. 1997). On the other hand, nitric oxide inhibited TG2 TGase activity via chemical modification, possibly S-nitrosylation, of a cysteine residue (Bernassola et al. 1999; Rossi et al. 2000).

The PDI activity of TG2 did not require calcium and was greatly modulated by concentrations of oxidants and anti-oxidants (Table 1) (Hasegawa et al. 2003). The PDI activity was potentiated by the presence of glutathione disulfide (GSSG, $10 \mu M$), which was not substantially inhibited by glutathione (GSH), even at high levels (approximately


Table 1 Positive (+) or negative (-) regulation of TG2 enzymatic activities by small molecules

	TGase	G_h	PDI	Kinase
Calcium	+ (Takeuchi et al. 1992)	– (Achyuthan and Greenberg 1987)	-a (Hasegawa et al. 2003)	- (Mishra and Murphy 2004; Mishra et al. 2007)
GTP	(Achyuthan and Greenberg 1987;Nakaoka et al. 1994)	+ (Nakaoka et al. 1994)	ns (Hasegawa et al. 2003)	nd
ATP	ns (Lai et al. 1998)	+ (Johnson and Terkeltaub 2005)	ns (Hasegawa et al. 2003)	+ (Mishra et al. 2007)
Lyso-SM	+ (Lai et al. 1997)	nd	nd	nd
Reducing agents	+ (Verderio et al. 2003)	nd	– (Hasegawa et al. 2003)	nd
C277S	- (Lee et al. 1993; Chen et al. 1996)	ns (Lee et al. 1993; Chen et al. 1996)	nd	nd
TGase inhibitors	- (MDC) (Davies et al. 1980)	ns	ns (putrescine) (Hasegawa et al. 2003)	- (MDC, cystamine) (Mishra and Murphy 2004)

^a In the presence of calcium, substrates of the PDI became unavailable due to its TGase activity (Hasegawa et al. 2003). C277S is a TG2 mutant in which Cys 277 is replaced by Ser. TGase inhibitors in parentheses have been examined for their effects on corresponding TG2 enzymatic activities

Lyso-SM sphingosylphosphocholine, ns not significant, nd not determined, MDC monodansylcadaverine

Fig. 1 Depending on its subcellular localization, TG2 presents various biochemical activities, such as a transglutaminase (TGase), G protein (G_h) , kinase, protein disulfide isomerase (PDI), and/or as an adaptor protein. **a** At low calcium concentrations under normal physiological conditions, intracellular TG2 does not display TGase activity, but rather other activities including G_h , kinase, and PDI. These TG2 enzymatic activities are found in mitochondria, the nucleus, and on the plasma membrane. Extracellular TG2 functions in cell adhesion as an adaptor protein and in ECM remodeling via TGase

 $500~\mu M$). These data suggest that TG2 PDI activity was present in the fairly reducing cytoplasmic environment (Hasegawa et al. 2003). Although cytosolic proteins do not usually have disulfide bonds due to the reducing nature of the environment, TG2 was estimated to have five to six disulfide bonds (Hasegawa et al. 2003). However, it is not clear which of these disulfide bonds is involved in the reaction.

In addition to these small molecules, more complicated cellular signaling might be involved in regulating TG2 activities. In particular, protein kinase A was shown to phosphorylate TG2, attenuating its TGase activity and enhancing its kinase activity (Mishra et al. 2007). Thus, variations of these regulators across various subcellular compartments would likely influence the biochemical activities of TG2.

TG2 at various subcellular locations

TG2 is predominantly a cytoplasmic protein, but it is also found in the nucleus and mitochondria, on the plasma membrane and the extracellular cell surface, and in the extracellular matrix (ECM). TG2 has been shown to dynamically translocate depending on the state of cell proliferation or in response to elevation of intracellular calcium concentrations (Korner et al. 1989; Peng et al. 1999). Although several factors have been proposed to be involved in TG2 translocation, the underlying mechanisms by which TG2 is translocated to various subcellular compartments remains unclear. Nonetheless, substantial evidence indicates that the subcellular location of TG2 is critical for regulation of its various biochemical activities, which subsequently trigger diverse downstream events.

activity. **b** In response to apoptotic stimuli, elevated calcium concentrations potentiate the TGase activity and suppress all other activities. TG2 TGase catalyzes massive intracellular protein crosslinks, generating protective shells that reduce the leakage of intracellular contents of apoptotic cells. During the process, the activated TGase is translocated to the nucleus, which might mediate chromatin condensation. Intracellular calcium levels are indicated by background color; low concentrations are represented by a shade of *blue* and high values by *red*

Cytoplasm

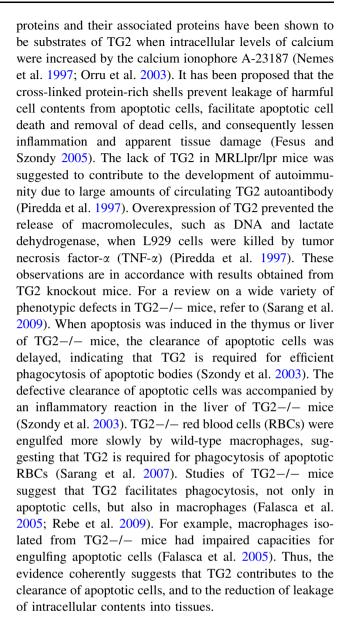
The cytoplasmic environment

TG2 TGase activity is usually suppressed in cytoplasmic environments due to low intracellular calcium concentrations and high GTP concentrations. The intracellular free GTP concentration has been estimated to be approximately 100–150 μM (Horie and Irisawa 1989; Hatakeyama et al. 1992), which should inhibit the TGase. Mg-GTP inhibited the TGase activity in a reaction containing 1 mM calcium with an IC₅₀ value of 9 μ M (Lai et al. 1998). A study using electro-permeabilized human endothelial cells indicated that intracellular TGase activity is virtually zero at physiological concentrations of ATP and GTP, even in the presence of 10 µM calcium (Smethurst and Griffin 1996). Consistently, depletion of GTP in situ resulted in a significant increase in TGase activity (Zhang et al. 1998; Lesort et al. 2000b). Thus, most of TG2 TGase-substrates have been identified under conditions that artificially activate the TGase.

Leaving experimental conditions aside, the majority of TG2 TGase-substrates identified so far are found in the cytoplasm, which is in concordance with the fact that TG2 is predominantly a cytoplasmic protein. Approximately two thirds of the intracellular proteins identified as TGase substrates in the Transdab wiki database (Csosz et al. 2009) were known to be primarily located in the cytoplasm.

Activation of TGase activity

TGase activity is induced by various stressful and/or apoptotic stimuli, such as maitotoxin, calphostin C, UV


irradiation, and oxidative stress (Lesort et al. 1998; Hebert et al. 2000; Lee et al. 2003; Robitaille et al. 2004; Shin et al. 2004; Yi et al. 2004; Ientile et al. 2007). In particular, numerous studies have focused on activation of TG2 by reactive oxygen species (ROS). ROS levels are dramatically increased by environmental stresses, such as UV or heat exposure, which may result in cell death via direct and/or indirect consequences. Previously, we showed that intracellular ROS was essential for the activation of in situ TGase in response to lysophosphatidic acid (LPA) and transforming growth factor- β (TGF- β) in Swiss 3T3 fibroblast cells (Lee et al. 2003). Intracellular ROS also mediated the TGase activation by arachidonic acid in NIH3T3 cells (Yi et al. 2004). The role of ROS in the activation of the TGase was supported by the in situ activation of TG2 by exogenous H₂O₂ (Lee et al. 2003; Yi et al. 2004). However, exogenous H₂O₂ did not potentiate in vitro TGase activity (data not shown). This indicates that in situ TG2 is indirectly activated by accumulation of intracellular ROS, which is likely due to elevation of intracellular calcium.

Diverse effects of TG2 on the cell death decision

Upon its activation by various apoptotic stimuli, TG2 has been reported to play various roles in cell death. Cytosolic TG2 has been implicated in exerting anti-apoptotic effects via activation of the NF-κB pathway in several cancer cell lines (Mann et al. 2006; Cao et al. 2008; Condello et al. 2008) or polymerization of cytosolic nucleophosmin in MCF7 cells (Park et al. 2009). In contrast, there is evidence that suggests a pro-apoptotic effect of TG2. Inhibition of TG2 expression prevented death in U937 cells upon apoptotic stimulus (Oliverio et al. 1999). It has been suggested that in NIH3T3 cells treated with calphositin C, TG2 induced apoptosis by cross-linking of a dual leucine zipper-bearing kinase (DLK), a pro-apoptotic kinase (Robitaille et al. 2004, 2008). TG2 facilitated calciuminduced apoptotic cell death via an apoptosis-inducing factor-dependent manner in a pancreatic cancer cell line, Panc-28 cells (Fok and Mehta 2007). Thus, depending on several parameters, such as cell type and apoptotic stimuli, TG2 can exert quite diverse downstream effects resulting in cell death or survival.

TG2 TGase activity during apoptotic cell death

Once cells undergo apoptotic cell death, TG2 is activated to catalyze protein cross-linking, resulting in protective shells that prevent the leakage of harmful cell contents from the apoptotic cells (Piredda et al. 1997; Nicholas et al. 2003). Cross-linking fibrous proteins is an efficient way to generate such protective shells. Indeed, cytoskeletal

Plasma membrane

TG2 as a G protein (G_h) on the plasma membrane

When associated with the plasma membrane, TG2 functions as a G protein, designated G_h , by mediating receptor signaling. G_h was shown to mediate α_1 -adrenergic receptor (α_1 -AR) signaling in rat liver membranes (Nakaoka et al. 1994), as the signaling was absent in TG2-/- mice (Nanda et al. 2001). The absence of TG2 prevented (-)epinephrine, an α_1 -AR agonist, from stimulating [α - 32 P]GTP-photolabeling of a 74-kDa protein in the liver (Nanda et al. 2001). Agonist activation of TP α thromboxane A2 receptors induced G_h stimulation of phospholipase C (PLC)-mediated inositol phosphate (IP) production (Vezza et al. 1999).

There have been contradictory observations suggesting different underlying mechanisms whereby G_h triggers downstream events, such as activation of IP production. Feng et al. (1996) demonstrated that the physical interaction of G_h with PLC $\delta 1$ resulted in activation of the latter. In contrast, Murthy et al. (1999) proposed an inhibitory model, where PLC $\delta 1$ is suppressed by a physical interaction with TG2. Cytosolic TG2 was suggested to inhibit PLC $\delta 1$ by forming a PLC $\delta 1$:TG2 complex, whereas binding of TG2 with GTP released PLC δ 1 from the inhibitory association (Murthy et al. 1999). On the other hand, it was also suggested that PLC $\delta 1$ plays a role as a guanine nucleotide exchanging factor (GEF) for TG2 and stabilizes the GTP:TG2 complex, implying a reciprocal regulation (Baek et al. 2001). Thus, further investigation is required to understand how Gh activity triggers downstream signaling pathways.

Functions of TG2 on the plasma membrane

Several studies indicate that G_h activity contributes to cell survival. A study analyzing TG2 knockout mice showed that G_h is involved in the liver regeneration program via the $\alpha 1$ -adrenergic receptor signaling pathway (Broten et al. 1999; Wu et al. 2000; Sarang et al. 2005). G_h activity of TG2 has been associated with the cell survival effect in NIH3T3 cells (Antonyak et al. 2002; Antonyak et al. 2003). A study that examined a number of point mutants in human TG2 suggested that the loss of GTP-binding activity can convert cytoprotective TG2 into a cell death-promoting factor (Datta et al. 2007).

During association with the plasma membrane, both the G_h and TGase activities of TG2 have been suggested to play a role in cell migration. In human aortic smooth muscle cells or human embryonic kidney cells, G_h was shown to modulate cell motility via its interaction with integrins (Kang et al. 2004). TG2 was co-immunoprecipitated with integrin- α_5 and was bound to the cytoplasmic tails of integrins in the presence of GTPyS (Kang et al. 2004). Treatment of HeLa cells with epidermal growth factor (EGF) resulted in TGase activation and its accumulation on the plasma membrane. This was particularly apparent at the leading edges of migratory cells where the TGase plays a critical role in EGF-stimulated cell migration and invasion (Antonyak et al. 2009). Ras and JNK were shown to mediate downstream signaling of EGF, causing TG2 to localize to the leading edges of cells and become an active TGase (Antonyak et al. 2009).

TG2 on the plasma membrane differs from cytosolic TG2

From a biochemical perspective, TG2 on the plasma membrane appears to be different from cytoplasmic TG2.

Retinoic acid (RA)-treatment of HeLa cells enhanced GTP binding of TG2 and promoted the association of TG2 with membrane fractions (Singh and Cerione 1996). Using a gel filtration column, TG2 was predominantly eluted in an approximately 600-kDa complex in control cells, whereas TG2 was also found in an additional 150-kDa complex following RA treatment (Singh and Cerione 1996). Taken together, it was proposed that, upon treatment with RA, TG2 dissociated from a large molecular mass complex and bound to the plasma membrane (Singh and Cerione 1996). Although the structural configurations in both compartments are not clear, the biochemical activities of TG2 in the two types of complexes appear to be different. TG2 found in the 150-kDa complex showed GTP-binding, GTPhydrolytic, and transglutaminase activities, whereas TG2 found in the 600-kDa complex had none of these activities (Singh and Cerione 1996). Simultaneous activation of both GTPase and TGase activity in the 150-kDa complex is somewhat perplexing because the TGase and G_h activities of TG2 are inversely regulated by calcium and GTP (Achyuthan and Greenberg 1987; Nakaoka et al. 1994; Iismaa et al. 2000; Begg et al. 2006a, b). Thus, TG2 activities in those complexes are likely regulated by additional cellular factors that differ between the two subcellular compartments. In this regard, it is intriguing that TG2 can be activated at a relatively low calcium concentration in the presence of lyso-SM (Lai et al. 1997). Later, it was suggested that β -tubulin, GST p1-1, and an unknown 110kDa protein form a large complex with TG2 in SK-N-BE cells (Piredda et al. 1999), although it is not clear if these interactions play important roles in the regulation of various TG2 activities.

Recently, TG2 isolated from membrane fractions was found to phosphorylate insulin-like growth factor-binding protein-3 (IGFBP-3) (Mishra and Murphy 2004). Although the physiological significance of TG2 kinase activity remains to be evaluated, it would be worthwhile to examine whether the kinase activity of TG2 is also modulated by its translocation between the cytoplasm and the plasma membrane.

Nucleus

Localization of TG2 in the nucleus

The presence of TG2 in the nucleus has been reported in various cell types, including rabbit liver nuclear preparations (Singh et al. 1995). Additionally, subcellular fractionation of human neuroblastoma SH-SY5Y cells showed that 7% of recovered TG2 was found in the nucleus (Lesort et al. 1998). When intracellular calcium levels increase, the active TGase translocates to the nucleus (Lesort et al. 1998; Peng et al. 1999; Campisi et al. 2003; Mann et al. 2006).

Lesort et al. (1998) demonstrated that TG2 translocated to the nucleus in response to elevation of intracellular calcium levels by maitotoxin. Glutamate promoted TG2 translocation to the nuclear compartment in differentiated astrocytes (Campisi et al. 2003). Treatment of Panc28 pancreatic cancer cells with the calcium ionophore A-23187 induced translocation of TG2 into the nucleus (Mann et al. 2006). As observed by electron microscopy, RA induced translocation of TG2 to the nucleus in a non-small cell lung cancer cell line (Peng et al. 1999).

Although TG2 translocation to the nucleus is poorly understood at the molecular level, importin- $\alpha 3$, a nuclear transport protein, was suggested as a mediator of active TG2 nuclear transport (Peng et al. 1999). Yeast two-hybrid and co-immunoprecipitation assays demonstrated an interaction between importin- $\alpha 3$ and TG2 (Peng et al. 1999). A putative bipartite nuclear localization sequence (NLS), with high homology to the NLS of the influenza virus non-structural protein NS1, was identified in the primary sequence of TG2 (Peng et al. 1999). However, the functional significance of the NLS of TG2 and the interaction of TG2 with importin- $\alpha 3$ are still unclear.

Molecular interactions of TG2 in the nucleus

Several nuclear proteins have been identified as potential substrates of the TGase. Retinoblastoma (Rb) protein, an important regulator of apoptosis, was identified as a potential substrate in U937 cells undergoing apoptosis (Oliverio et al. 1997). The TGase was subsequently reported to protect Rb from caspase-induced degradation in a transamidation-dependent manner. This was suggested to provide an anti-apoptotic effect against all-trans-N-(4hydroxyphenyl)retinamide (HPR) (Boehm et al. 2002). However, the role of the TGase activity in the anti-apoptotic effect was somewhat contradictory to the previous result in that the Gh activity of TG2 was sufficient to protect HL60 cells from HPR-induced death (Antonyak et al. 2001). Moreover, Milakovic et al. (2004) showed that TG2 does not require its TGase activity to protect HEK293 cells against thapsigargin-induced apoptosis. C277S TG2, a mutant that lacks transamidating activity, has a protective effect against apoptosis when targeted to the nucleus (Milakovic et al. 2004). The anti-apoptotic effect correlated with increased interactions with Rb, but protection of Rb from degradation by cross-linking was not observed. Although further investigation is necessary to reconcile this discrepancy, TG2 might exert similar anti-apoptotic effects through different mechanisms depending on the cell type and the type or intensity of the cell death inducer.

Recently, Rb was shown to be a substrate for TG2 kinase activity (Mishra et al. 2007). The study by Mishra et al. raised an intriguing possibility that the anti-apoptotic

effect of C277S TG2 might be mediated by phosphorylation of Rb by TG2. However, it still needs to be tested whether the C277S TG2 mutant maintains kinase activity. Besides Rb, p53 and histones were shown to be phosphorylated by TG2 (Mishra and Murphy 2006; Mishra et al. 2007). TG2 is able to not only phosphorylate histones, but also cross-link histones in vitro. This suggests that TG2 might be involved in the epigenetic regulation of chromatin structure and function via posttranslational modifications of histone proteins (Ballestar et al. 1996, 2001; Kim et al. 2001; Mishra et al. 2006). Histone cross-linking catalyzed by TG2 has also been proposed to mediate chromatin condensation, a morphological hallmark of apoptosis (Ballestar et al. 1996). In the nucleus, TG2 might have DNA nuclease activity during apoptotic cell death. Sphingosine treatment of human melanocytic A375-S2 cells induced TG2 translocation from the cytoplasm to the nuclei, where TG2 mediated DNA hydrolysis during apoptotic cell death (Takeuchi et al. 1998). However, this finding should be verified by independent research groups.

Mitochondria

Mitochondrial environment

Mitochondria consist of four subcompartments: the outer mitochondrial membrane (OMM), the inner membrane space (IMS), the inner mitochondrial membrane (IMM), and the mitochondrial matrix. Small molecules up to 3 kDa are able to diffuse freely between the cytoplasm and the IMS through 2-nm aqueous pores in the OMM (Benz 1990). Therefore, calcium and nucleotide concentrations in the IMS may not differ significantly from those in the cytoplasm. In contrast, passive diffusion of any molecules through the IMM is very difficult. Thus, the IMM forms a barrier between the cytoplasm and the mitochondrial matrix. Since the mitochondrial matrix is a significant storage site of calcium in the cell, free calcium concentrations in the mitochondrial matrix are normally kept much higher (1–5 μM) than in the cytoplasm (Chalmers and Nicholls 2003). Calcium at this range of concentrations may not be high enough to activate the TGase activity in the presence of GTP under normal physiological conditions. However, intracellular calcium overload is likely to lead to TGase activation in the IMS or mitochondrial matrix.

Localization of TG2 in mitochondria

Our analysis of the amino-terminal sequence of TG2 did not reveal an obvious signal sequence containing the targeting information for mitochondrial precursor proteins (data not shown). Although it is not a typical mitochondrial

protein, TG2 seems to play an important role in mitochondria. Given the important roles of mitochondria in regulating apoptosis, the various effects of TG2 on apoptotic cell death led to investigation of the involvement of TG2 in mitochondrial functions. In SK-n-BE(2) cells, approximately half of the TG2 was associated with mitochondria (Rodolfo et al. 2004). Upon cell death induced by staurosporine (STS) treatment, TG2 cross-linked Bax on the OMM, which may result in the stabilization of the Bax oligomer, and consequently a stably open pore in the OMM (Rodolfo et al. 2004). Since expression of TG2 in neuroblastoma and 3T3 fibroblast cells resulted in hyperpolarization of mitochondria and increased ROS production (Piacentini et al. 2002), localization of TG2 in mitochondria might not be limited to the OMM. Moreover, several mitochondrial matrix proteins have been shown to be TGase substrates, including aconitase (Kim et al. 2005), Hsp70/90 organizing protein, Hsp60 (Orru et al. 2003), and α-ketoglutarate dehydrogenase (Cooper et al. 1997).

Functions of mitochondrial TG2 as a PDI

TG2 plays an important role in mitochondrial physiology through its protein disulfide isomerase activity during normal circumstances. PDI activity of TG2 was first demonstrated in vitro using RNase A as a substrate; however, the activity was only about 5% of that of a commercial bovine liver PDI (Hasegawa et al. 2003). There are several proteins that are not members of the PDI-family, but display some degree of PDI activity, including integrins, a spliceosome protein, thyroglobulin, fibronectin, and the elongation factor EF-Tu (Turano et al. 2002). Until recently, the relevance of PDI activity to TG2 function had not been appreciated due to the lack of evidence that physiological substrates of the PDI exist. This raised the question as to whether the PDI activity of TG2 was purely an in vitro phenomenon.

In general, disulfide formation is an enzymatically catalyzed process that occurs in the ER and mitochondrial intermembrane space (Riemer et al. 2009). The formation of disulfide bonds has been thought to be counteracted by numerous reducing enzymes in the cytoplasm, where reduced glutathione is maintained at a very high concentration (~10 mM) (Ostergaard et al. 2004). In mitochondria, TG2 acting as a PDI contributes to the correct assembly of respiratory chain complexes (Mastroberardino et al. 2006; Battaglia et al. 2007). ATP synthase, NADHubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and cytochrome c oxidase were identified as the PDI substrates (Mastroberardino et al. 2006). In line with the observation of the PDI activity of TG2 in mitochondria, several reports documented abnormal phenotypes of TG2 knockout mice associated with altered mitochondrial physiology. In TG2-/- hearts, a defect in ATP was identified as a result of impaired mitochondrial production (Szondy et al. 2006). TG2-/- mice displayed a decrease in motor behavior, which might be due to a defect in mitochondrial energy production (Szondy et al. 2006; Malorni et al. 2008). The defect in ATP generation might be the cause of glucose intolerance and hyperglycemia in TG2-/- animals (Bernassola et al. 2002). Recently, a physical interaction was demonstrated between TG2 and adenine nucleotide translocator 1 (ANT1) in mitochondria (Malorni et al. 2009). Mitochondria isolated from hearts of TG2-/- mice exhibited increased polymerization of ANT1, suggesting that the PDI activity of TG2 regulates the ADP/ATP transporter function (Malorni et al. 2009). ANT1 is a core component of the permeability transition pore complex (PTPC) (Zhivotovsky et al. 2009). Thus, TG2 PDI activity plays an important role in regulating mitochondrial proteins under normal physiological conditions.

Additional intracellular organelles

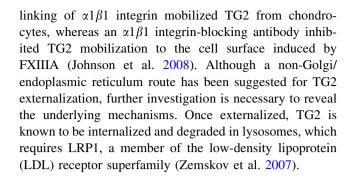
In rat brain, relatively high TGase activity is present on the external surface of synaptosomes (Gilad and Varon 1985). Involvement of TG2 in neurite formation has been suggested since cellular transglutaminase-specific activity increased 2.5-fold from day 3 to adulthood during mouse brain maturation (Maccioni and Seeds 1986). Involvement of TG2 in neurite formation is further supported by neuronal differentiation promoted by overexpression of TG2 in human neuroblastoma SH-SY5Y cells with selective localization of TG2 to the tips of the neurites (Tucholski et al. 2001).

Although there is little evidence that TG2 is localized to the ER, two putative substrates of TG2, BIP and HSP90B1, are heat shock proteins primarily located in the ER (Orru et al. 2003). Further verification is necessary to confirm if these candidates are genuine substrates of TG2.

Extracellular space

Although it has been initially studied as an intracellular enzyme, there is now little doubt that TG2 is secreted into the extracellular space or onto the cell surface (Verderio et al. 1998; Gaudry et al. 1999a, b). Cell-surface TG2 is proposed to be an important tissue-stabilizing enzyme that is active during wound healing (Haroon et al. 1999). Recently, the functional importance of TG2 as a matrix stabilizer through its protein cross-linking activity, and as an important cell adhesion protein involved in cell survival, was thoroughly reviewed (Collighan and Griffin 2009). Since extracellular TG2 has been described in depth elsewhere (Telci and Griffin 2006; Zemskov et al. 2006;

Collighan and Griffin 2009), molecular interactions of extracellular TG2 and its externalization will be briefly covered here.


Molecular interactions of extracellular TG2 as an adaptor protein

In various cell lines, cell surface TG2 has been shown to interact with $\alpha 4$ -, $\alpha 5$ -, $\beta 1$ -, and/or $\beta 3$ -integrins (Gaudry et al. 1999a; Isobe et al. 1999; Akimov et al. 2000; Takahashi et al. 2000; Akimov and Belkin 2001a, b). Cell surface TG2 serves as an integrin-binding adhesion coreceptor for fibronectin, thereby promoting cell adhesion and spreading (Akimov et al. 2000; Akimov and Belkin 2001a, b). Recently, it was demonstrated that fibronectin-bound TG2 was directly associated with syndecan-4 in fibroblasts, suggesting its role in tissue repair under situations of matrix breakdown where Arg-Gly-Asp (RGD)-dependent cell adhesion is compromised (Telci et al. 2008). During apoptosis, extracellular TG2 in a guanine nucleotide-bound form was proposed to stabilize efficient phagocytic portals in apoptotic cells via its interaction with MFG-E8, a protein known to bridge integrin- β 3 (Toth et al. 2009).

TG2 knockout mice displayed an increase in tumor progression and a reduction in survival rate (Jones et al. 2006). Intratumor injection of TG2 into mice bearing CT26 colon carcinoma tumors resulted in a reduction of tumor growth, likely through modulation of ECM components (Jones et al. 2006). It is not well understood how TG2 suppresses tumor growth. Recently, the C terminus of TG2 was shown to interact with the N terminus of GPR56, a member of a newly described family of G protein-coupled receptors (Xu et al. 2006). GPR56 was shown to play an important role in suppressing tumor growth and metastasis (Xu et al. 2006), which might be related to its role in cell adhesion (Xu and Hynes 2007). Thus, it is tempting to speculate that the extracellular TG2-GPR56 interaction suppresses tumor growth and metastasis (Xu and Hynes 2007).

Externalization of TG2

Despite recent data suggesting extracellular TG2, TG2 externalization into the ECM is far from clear. Externalization appears to depend on an intact fibronectin-binding site in the amino-terminal sandwich region of TG2 (Jeong et al. 1995; Gaudry et al. 1999b). Cells overexpressing C277S TG2 did not deposit the enzyme into the ECM or secrete it into the cell culture medium, implying that its tertiary conformation is critical for its externalization mechanism (Balklava et al. 2002). TG2 externalization from chondrocytes required interaction between FXIIIA and $\alpha 1\beta 1$ integrin (Johnson et al. 2008). Antibody cross-

TGase activity in the extracellular space

Due to low-GTP and high-calcium concentrations in the extracellular space, it is conceivable that extracellular TG2 is an active TGase. However, it may not be the case, because extracellular compartments are maintained at stable oxidizing potentials (Go and Jones 2008). In the presence of standard cell culture medium, such as DMEM, TG2 exogenously added to a culture required dithiothreitol (DTT) for TGase activation (Verderio et al. 2003). Recently, it was proposed that most extracellular TG2 is maintained in the closed conformation, specifically the inactive TGase conformation, despite relatively high extracellular calcium concentrations (Pinkas et al. 2007). In CH-8 cells, a GTP-binding TG2 mutant (K173L) was not efficiently secreted into conditioned media, implying that externalized TG2 is likely in a GTP-bound form (Johnson and Terkeltaub 2005). Moreover, the interaction of TG2 with the extracellular domains of integrin subunits does not require cross-linking activity and facilitates adhesion, spreading, and motility of cells (Isobe et al. 1999; Akimov and Belkin 2001a, b; Stephens et al. 2004). Thus, the secreted TG2 that functions as an adaptor protein is an inactive TGase.

Meanwhile, data suggests that the TGase activity is involved in remodeling of the ECM under normal and pathological circumstances. A selective inhibitor of the TGase, KCC009 (Choi et al. 2005), interfered with remodeling of fibronectin in glioblastomas, both in vitro and in vivo (Yuan et al. 2007). In opossum kidney proximal tubular epithelial cell cultures, high glucose (36 mM) treatment increased extracellular TGase activity, resulting in ECM cross-linking (Skill et al. 2004). TGase-treated collagen substrates were shown to be resistant to protease degradation and facilitated differentiation of human osteoblasts (Chau et al. 2005). Therefore, functions of extracellular TG2 are mediated by its TGase activity, as well as molecular interactions as an adaptor protein. In addition, relatively high level of extracellular TGase activity has been reported under different pathological conditions, such as fibrosis (Griffin et al. 1979). The involvement of extracellular TG2 in pathological conditions has been

described in detail elsewhere (Verderio et al. 2005; Telci and Griffin 2006; Ientile et al. 2007; Siegel and Khosla 2007; Collighan and Griffin 2009). In particular, the TGase inhibition using TG2 inhibitors or TG2 knockout mice slowed the progression of chronic kidney fibrosis and diabetic nephropathy (Johnson et al. 2007; Shweke et al. 2008; Fisher et al. 2009; Huang et al. 2009), suggesting that TG2 is an important therapeutic target for sclerosing kidney diseases.

Although the role of TG2 in disease is not a primary focus of this review, it is clearly worthwhile to note that TG2, in intracellular and/or extracellular compartments, has been implicated in the pathogenesis of a wide variety of diseases: inflammatory diseases including celiac sprue (Molberg et al. 1998; Kim 2006); neurodegenerative disorders including Huntington's, Alzheimer's, and Parkinson's diseases (Lesort et al. 2000a; Ruan and Johnson 2007; Wang et al. 2008); and cancer (Kotsakis and Griffin 2007).

Conclusions and perspectives

In general, TG2 TGase activity seems to become the dominant function of TG2 during apoptotic cell death accompanied by an elevation of intracellular calcium. In addition to TGase activity, at normal intracellular calcium concentrations, the diverse cellular functions of TG2 appear to be attributed to Gh, PDI, and kinase activities. These various biochemical activities of TG2 are differentially regulated depending on its subcellular localization. The microenvironments of the various organelles in which TG2 is found, create unique molecular interactions between TG2 and other proteins. Information on the subcellular locations of TG2, combined with data on the biochemical status of TG2, provides useful clues and insights about the functions and regulation of TG2.

In many other protein localization studies, genetically encoded fluorescent proteins have transformed the research field by allowing for tracing of dynamic protein movements in response to environmental stimuli or internal signaling pathways (Davis 2004; O'Rourke et al. 2005). Knowledge of TG2 subcellular localization has expanded greatly recently, yet studies in the field have rarely utilized fluorescent proteins, rather they primarily rely on biochemical analysis of fractionated samples and/or immunohistochemistry of fixed samples. The application of fluorescent proteins, which would reveal dynamic TG2 translocation in live cells, is anticipated for future studies of TG2.

Acknowledgments This work was supported in part by the National Research Foundation of Korea through the Basic Research Program (2008-05943), the System Bio-dynamics Research Center (2009-

0091504), and the Regional Research Universities Program/Medical & Bio-Materials Research Center.

References

- Achyuthan KE, Greenberg CS (1987) Identification of a guanosine triphosphate-binding site on guinea pig liver transglutaminase Role of GTP and calcium ions in modulating activity. J Biol Chem 262:1901–1906
- Akimov SS, Belkin AM (2001a) Cell-surface transglutaminase promotes fibronectin assembly via interaction with the gelatin-binding domain of fibronectin: a role in TGFbeta-dependent matrix deposition. J Cell Sci 114:2989–3000
- Akimov SS, Belkin AM (2001b) Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood 98:1567–1576
- Akimov SS, Krylov D, Fleischman LF, Belkin AM (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148:825–838
- Antonyak MA, Singh US, Lee DA, Boehm JE, Combs C, Zgola MM, Page RL, Cerione RA (2001) Effects of tissue transglutaminase on retinoic acid-induced cellular differentiation and protection against apoptosis. J Biol Chem 276:33582–33587
- Antonyak MA, Boehm JE, Cerione RA (2002) Phosphoinositide 3-kinase activity is required for retinoic acid-induced expression and activation of the tissue transglutaminase. J Biol Chem 277:14712–14716
- Antonyak MA, McNeill CJ, Wakshlag JJ, Boehm JE, Cerione RA (2003) Activation of the Ras-ERK pathway inhibits retinoic acid-induced stimulation of tissue transglutaminase expression in NIH3T3 cells. J Biol Chem 278:15859–15866
- Antonyak MA, Jansen JM, Miller AM, Ly TK, Endo M, Cerione RA (2006) Two isoforms of tissue transglutaminase mediate opposing cellular fates. Proc Natl Acad Sci USA 103:18609–18614
- Antonyak MA, Li B, Regan AD, Feng Q, Dusaban SS, Cerione RA (2009) Tissue transglutaminase is an essential participant in the epidermal growth factor-stimulated signaling pathway leading to cancer cell migration and invasion. J Biol Chem 284:17914– 17925
- Baek KJ, Kang S, Damron D, Im M (2001) Phospholipase Cdelta1 is a guanine nucleotide exchanging factor for transglutaminase II (Galpha h) and promotes alpha 1B-adrenoreceptor-mediated GTP binding and intracellular calcium release. J Biol Chem 276:5591–5597
- Balklava Z, Verderio E, Collighan R, Gross S, Adams J, Griffin M (2002) Analysis of tissue transglutaminase function in the migration of Swiss 3T3 fibroblasts: the active-state conformation of the enzyme does not affect cell motility but is important for its secretion. J Biol Chem 277:16567–16575
- Ballestar E, Abad C, Franco L (1996) Core histones are glutaminyl substrates for tissue transglutaminase. J Biol Chem 271:18817–18824
- Ballestar E, Boix-Chornet M, Franco L (2001) Conformational changes in the nucleosome followed by the selective accessibility of histone glutamines in the transglutaminase reaction: effects of ionic strength. Biochemistry 40:1922–1929
- Battaglia G, Farrace MG, Mastroberardino PG, Viti I, Fimia GM, Van Beeumen J, Devreese B, Melino G, Molinaro G, Busceti CL, Biagioni F, Nicoletti F, Piacentini M (2007) Transglutaminase 2 ablation leads to defective function of mitochondrial respiratory complex I affecting neuronal vulnerability in experimental models of extrapyramidal disorders. J Neurochem 100:36–49
- Begg GE, Holman SR, Stokes PH, Matthews JM, Graham RM, Iismaa SE (2006a) Mutation of a critical arginine in the GTP-binding

site of transglutaminase 2 disinhibits intracellular cross-linking activity. J Biol Chem 281:12603–12609

- Begg GE, Carrington L, Stokes PH, Matthews JM, Wouters MA, Husain A, Lorand L, Iismaa SE, Graham RM (2006b) Mechanism of allosteric regulation of transglutaminase 2 by GTP. Proc Natl Acad Sci USA 103:19683–19688
- Benz R (1990) Biophysical properties of porin pores from mitochondrial outer membrane of eukaryotic cells. Experientia 46:131–137
- Bernassola F, Rossi A, Melino G (1999) Regulation of transglutaminases by nitric oxide. Ann N Y Acad Sci 887:83–91
- Bernassola F, Federici M, Corazzari M, Terrinoni A, Hribal ML, De Laurenzi V, Ranalli M, Massa O, Sesti G, McLean WH, Citro G, Barbetti F, Melino G (2002) Role of transglutaminase 2 in glucose tolerance: knockout mice studies and a putative mutation in a MODY patient. FASEB J 16:1371–1378
- Boehm JE, Singh U, Combs C, Antonyak MA, Cerione RA (2002) Tissue transglutaminase protects against apoptosis by modifying the tumor suppressor protein p110 Rb. J Biol Chem 277:20127– 20130
- Broten J, Michalopoulos G, Petersen B, Cruise J (1999) Adrenergic stimulation of hepatocyte growth factor expression. Biochem Biophys Res Commun 262:76–79
- Campisi A, Caccamo D, Raciti G, Cannavo G, Macaione V, Curro M, Macaione S, Vanella A, Ientile R (2003) Glutamate-induced increases in transglutaminase activity in primary cultures of astroglial cells. Brain Res 978:24–30
- Cao L, Petrusca DN, Satpathy M, Nakshatri H, Petrache I, Matei D (2008) Tissue transglutaminase protects epithelial ovarian cancer cells from cisplatin-induced apoptosis by promoting cell survival signaling. Carcinogenesis 29:1893–1900
- Chalmers S, Nicholls DG (2003) The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem 278:19062–19070
- Chau DY, Collighan RJ, Verderio EA, Addy VL, Griffin M (2005) The cellular response to transglutaminase-cross-linked collagen. Biomaterials 26:6518–6529
- Chen S, Lin F, Iismaa S, Lee KN, Birckbichler PJ, Graham RM (1996) Alpha1-adrenergic receptor signaling via Gh is subtype specific and independent of its transglutaminase activity. J Biol Chem 271:32385–32391
- Choi K, Siegel M, Piper JL, Yuan L, Cho E, Strnad P, Omary B, Rich KM, Khosla C (2005) Chemistry and biology of dihydroisox-azole derivatives: selective inhibitors of human transglutaminase 2. Chem Biol 12:469–475
- Collighan RJ, Griffin M (2009) Transglutaminase 2 cross-linking of matrix proteins: biological significance and medical applications. Amino Acids 36:659–670
- Condello S, Caccamo D, Curro M, Ferlazzo N, Parisi G, Ientile R (2008) Transglutaminase 2 and NF-kappaB interplay during NGF-induced differentiation of neuroblastoma cells. Brain Res 1207:1–8
- Cooper AJ, Sheu KR, Burke JR, Onodera O, Strittmatter WJ, Roses AD, Blass JP (1997) Transglutaminase-catalyzed inactivation of glyceraldehyde 3-phosphate dehydrogenase and alpha-ketoglutarate dehydrogenase complex by polyglutamine domains of pathological length. Proc Natl Acad Sci USA 94:12604–12609
- Csosz E, Mesko B, Fesus L (2009) Transdab wiki: the interactive transglutaminase substrate database on web 2.0 surface. Amino Acids 36:615–617
- Datta S, Antonyak MA, Cerione RA (2007) GTP-binding-defective forms of tissue transglutaminase trigger cell death. Biochemistry 46:14819–14829
- Davies PJ, Davies DR, Levitzki A, Maxfield FR, Milhaud P, Willingham MC, Pastan IH (1980) Transglutaminase is essential in receptor-mediated endocytosis of alpha 2-macroglobulin and polypeptide hormones. Nature 283:162–167

- Davis TN (2004) Protein localization in proteomics. Curr Opin Chem Biol 8:49–53
- Facchiano A, Facchiano F (2009) Transglutaminases and their substrates in biology and human diseases: 50 years of growing. Amino Acids 36:599–614
- Falasca L, Iadevaia V, Ciccosanti F, Melino G, Serafino A, Piacentini M (2005) Transglutaminase type II is a key element in the regulation of the anti-inflammatory response elicited by apoptotic cell engulfment. J Immunol 174:7330–7340
- Feng JF, Rhee SG, Im MJ (1996) Evidence that phospholipase deltal is the effector in the Gh (transglutaminase II)-mediated signaling. J Biol Chem 271:16451–16454
- Fesus L, Piacentini M (2002) Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 27:534–539
- Fesus L, Szondy Z (2005) Transglutaminase 2 in the balance of cell death and survival. FEBS Lett 579:3297–3302
- Fisher M, Jones RA, Huang L, Haylor JL, El Nahas M, Griffin M, Johnson TS (2009) Modulation of tissue transglutaminase in tubular epithelial cells alters extracellular matrix levels: a potential mechanism of tissue scarring. Matrix Biol 28:20–31
- Fok JY, Mehta K (2007) Tissue transglutaminase induces the release of apoptosis inducing factor and results in apoptotic death of pancreatic cancer cells. Apoptosis 12:1455–1463
- Gaudry CA, Verderio E, Jones RA, Smith C, Griffin M (1999a) Tissue transglutaminase is an important player at the surface of human endothelial cells: evidence for its externalization and its colocalization with the beta(1) integrin. Exp Cell Res 252:104– 113
- Gaudry CA, Verderio E, Aeschlimann D, Cox A, Smith C, Griffin M (1999b) Cell surface localization of tissue transglutaminase is dependent on a fibronectin-binding site in its N-terminal betasandwich domain. J Biol Chem 274:30707–30714
- Gilad GM, Varon LE (1985) Transglutaminase activity in rat brain: characterization, distribution, and changes with age. J Neurochem 45:1522–1526
- Go YM, Jones DP (2008) Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta 1780:1273–1290
- Griffin M, Smith LL, Wynne J (1979) Changes in transglutaminase activity in an experimental model of pulmonary fibrosis induced by paraquat. Br J Exp Pathol 60:653–661
- Haroon ZA, Hettasch JM, Lai TS, Dewhirst MW, Greenberg CS (1999) Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis. FASEB J 13:1787–1795
- Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y (2003) A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 373:793–803
- Hatakeyama K, Harada T, Kagamiyama H (1992) IMP dehydrogenase inhibitors reduce intracellular tetrahydrobiopterin levels through reduction of intracellular GTP levels. Indications of the regulation of GTP cyclohydrolase I activity by restriction of GTP availability in the cells. J Biol Chem 267:20734–20739
- Hebert SS, Daviau A, Grondin G, Latreille M, Aubin RA, Blouin R (2000) The mixed lineage kinase DLK is oligomerized by tissue transglutaminase during apoptosis. J Biol Chem 275:32482–32490
- Horie M, Irisawa H (1989) Dual effects of intracellular magnesium on muscarinic potassium channel current in single guinea-pig atrial cells. J Physiol 408:313–332
- Huang L, Haylor JL, Hau Z, Jones RA, Vickers ME, Wagner B, Griffin M, Saint RE, Coutts IG, El Nahas AM, Johnson TS (2009) Transglutaminase inhibition ameliorates experimental diabetic nephropathy. Kidney Int 76:383–394
- Ientile R, Caccamo D, Griffin M (2007) Tissue transglutaminase and the stress response. Amino Acids 33:385–394

- Iismaa SE, Wu MJ, Nanda N, Church WB, Graham RM (2000) GTP binding and signaling by Gh/transglutaminase II involves distinct residues in a unique GTP-binding pocket. J Biol Chem 275:18259–18265
- Isobe T, Takahashi H, Ueki S, Takagi J, Saito Y (1999) Activityindependent cell adhesion to tissue-type transglutaminase is mediated by alpha4beta1 integrin. Eur J Cell Biol 78:876–883
- Jeong JM, Murthy SN, Radek JT, Lorand L (1995) The fibronectinbinding domain of transglutaminase. J Biol Chem 270:5654– 5658
- Jeong EM, Kim CW, Cho SY, Jang GY, Shin DM, Jeon JH, Kim IG (2009) Degradation of transglutaminase 2 by calcium-mediated ubiquitination responding to high oxidative stress. FEBS Lett 583:648–654
- Johnson KA, Terkeltaub RA (2005) External GTP-bound transglutaminase 2 is a molecular switch for chondrocyte hypertrophic differentiation and calcification. J Biol Chem 280:15004–15012
- Johnson TS, Fisher M, Haylor JL, Hau Z, Skill NJ, Jones R, Saint R, Coutts I, Vickers ME, El Nahas AM, Griffin M (2007) Transglutaminase inhibition reduces fibrosis and preserves function in experimental chronic kidney disease. J Am Soc Nephrol 18:3078–3088
- Johnson KA, Rose DM, Terkeltaub RA (2008) Factor XIIIA mobilizes transglutaminase 2 to induce chondrocyte hypertrophic differentiation. J Cell Sci 121:2256–2264
- Jones RA, Kotsakis P, Johnson TS, Chau DY, Ali S, Melino G, Griffin M (2006) Matrix changes induced by transglutaminase 2 lead to inhibition of angiogenesis and tumor growth. Cell Death Differ 13:1442–1453
- Kang SK, Yi KS, Kwon NS, Park KH, Kim UH, Baek KJ, Im MJ (2004) Alpha1B-adrenoceptor signaling and cell motility: GTPase function of Gh/transglutaminase 2 inhibits cell migration through interaction with cytoplasmic tail of integrin alpha subunits. J Biol Chem 279:36593–36600
- Kim SY (2006) Transglutaminase 2 in inflammation. Front Biosci 11:3026–3035
- Kim JH, Choy HE, Nam KH, Park SC (2001) Transglutaminasemediated crosslinking of specific core histone subunits and cellular senescence. Ann N Y Acad Sci 928:65–70
- Kim SY, Marekov L, Bubber P, Browne SE, Stavrovskaya I, Lee J, Steinert PM, Blass JP, Beal MF, Gibson GE, Cooper AJ (2005) Mitochondrial aconitase is a transglutaminase 2 substrate: transglutamination is a probable mechanism contributing to high-molecular-weight aggregates of aconitase and loss of aconitase activity in Huntington disease brain. Neurochem Res 30:1245–1255
- Korner G, Schneider DE, Purdon MA, Bjornsson TD (1989) Bovine aortic endothelial cell transglutaminase enzyme characterization and regulation of activity. Biochem J 262:633–641
- Kotsakis P, Griffin M (2007) Tissue transglutaminase in tumour progression: friend or foe? Amino Acids 33:373–384
- Lai TS, Bielawska A, Peoples KA, Hannun YA, Greenberg CS (1997) Sphingosylphosphocholine reduces the calcium ion requirement for activating tissue transglutaminase. J Biol Chem 272:16295– 16300
- Lai TS, Slaughter TF, Peoples KA, Hettasch JM, Greenberg CS (1998) Regulation of human tissue transglutaminase function by magnesium-nucleotide complexes Identification of distinct binding sites for Mg-GTP and Mg-ATP. J Biol Chem 273:1776–1781
- Lee KN, Arnold SA, Birckbichler PJ, Patterson MK Jr, Fraij BM, Takeuchi Y, Carter HA (1993) Site-directed mutagenesis of human tissue transglutaminase: Cys-277 is essential for transglutaminase activity but not for GTPase activity. Biochim Biophys Acta 1202:1–6
- Lee ZW, Kwon SM, Kim SW, Yi SJ, Kim YM, Ha KS (2003) Activation of in situ tissue transglutaminase by intracellular

- reactive oxygen species. Biochem Biophys Res Commun 305:633-640
- Lesort M, Attanavanich K, Zhang J, Johnson GV (1998) Distinct nuclear localization and activity of tissue transglutaminase. J Biol Chem 273:11991–11994
- Lesort M, Tucholski J, Miller ML, Johnson GV (2000a) Tissue transglutaminase: a possible role in neurodegenerative diseases. Prog Neurobiol 61:439–463
- Lesort M, Tucholski J, Zhang J, Johnson GV (2000b) Impaired mitochondrial function results in increased tissue transglutaminase activity in situ. J Neurochem 75:1951–1961
- Liu S, Cerione RA, Clardy J (2002) Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 99:2743–2747
- Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156
- Maccioni RB, Seeds NW (1986) Transglutaminase and neuronal differentiation. Mol Cell Biochem 69:161–168
- Malorni W, Farrace MG, Rodolfo C, Piacentini M (2008) Type 2 transglutaminase in neurodegenerative diseases: the mitochondrial connection. Curr Pharm Des 14:278–288
- Malorni W, Farrace MG, Matarrese P, Tinari A, Ciarlo L, Mousavi-Shafaei P, D'Eletto M, Di Giacomo G, Melino G, Palmieri L, Rodolfo C, Piacentini M (2009) The adenine nucleotide translocator 1 acts as a type 2 transglutaminase substrate: implications for mitochondrial-dependent apoptosis. Cell Death Differ 16(11):1480–1492
- Mann AP, Verma A, Sethi G, Manavathi B, Wang H, Fok JY, Kunnumakkara AB, Kumar R, Aggarwal BB, Mehta K (2006) Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-kappaB in cancer cells: delineation of a novel pathway. Cancer Res 66:8788–8795
- Mastroberardino PG, Farrace MG, Viti I, Pavone F, Fimia GM, Melino G, Rodolfo C, Piacentini M (2006) "Tissue" transglutaminase contributes to the formation of disulphide bridges in proteins of mitochondrial respiratory complexes. Biochim Biophys Acta 1757:1357–1365
- Milakovic T, Tucholski J, McCoy E, Johnson GV (2004) Intracellular localization and activity state of tissue transglutaminase differentially impacts cell death. J Biol Chem 279:8715–8722
- Mishra S, Murphy LJ (2004) Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 279:23863–23868
- Mishra S, Murphy LJ (2006) The p53 oncoprotein is a substrate for tissue transglutaminase kinase activity. Biochem Biophys Res Commun 339:726–730
- Mishra S, Saleh A, Espino PS, Davie JR, Murphy LJ (2006) Phosphorylation of histones by tissue transglutaminase. J Biol Chem 281:5532–5538
- Mishra S, Melino G, Murphy LJ (2007) Transglutaminase 2 kinase activity facilitates protein kinase A-induced phosphorylation of retinoblastoma protein. J Biol Chem 282:18108–18115
- Molberg O, McAdam SN, Korner R, Quarsten H, Kristiansen C, Madsen L, Fugger L, Scott H, Noren O, Roepstorff P, Lundin KE, Sjostrom H, Sollid LM (1998) Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gutderived T cells in celiac disease. Nat Med 4:713–717
- Monsonego A, Shani Y, Friedmann I, Paas Y, Eizenberg O, Schwartz M (1997) Expression of GTP-dependent and GTP-independent tissue-type transglutaminase in cytokine-treated rat brain astrocytes. J Biol Chem 272:3724–3732
- Murthy SN, Lomasney JW, Mak EC, Lorand L (1999) Interactions of G(h)/transglutaminase with phospholipase Cdelta1 and with GTP. Proc Natl Acad Sci USA 96:11815–11819

- Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K, Im MJ, Graham RM (1994) Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 264:1593–1596
- Nanda N, Iismaa SE, Owens WA, Husain A, Mackay F, Graham RM (2001) Targeted inactivation of Gh/tissue transglutaminase II. J Biol Chem 276:20673–20678
- Nemes Z Jr, Adany R, Balazs M, Boross P, Fesus L (1997) Identification of cytoplasmic actin as an abundant glutaminyl substrate for tissue transglutaminase in HL-60 and U937 cells undergoing apoptosis. J Biol Chem 272:20577–20583
- Nicholas B, Smethurst P, Verderio E, Jones R, Griffin M (2003) Cross-linking of cellular proteins by tissue transglutaminase during necrotic cell death: a mechanism for maintaining tissue integrity. Biochem J 371:413–422
- O'Rourke NA, Meyer T, Chandy G (2005) Protein localization studies in the age of 'Omics'. Curr Opin Chem Biol 9:82–87
- Oliverio S, Amendola A, Di Sano F, Farrace MG, Fesus L, Nemes Z, Piredda L, Spinedi A, Piacentini M (1997) Tissue transglutaminase-dependent posttranslational modification of the retinoblastoma gene product in promonocytic cells undergoing apoptosis. Mol Cell Biol 17:6040–6048
- Oliverio S, Amendola A, Rodolfo C, Spinedi A, Piacentini M (1999) Inhibition of "tissue" transglutaminase increases cell survival by preventing apoptosis. J Biol Chem 274:34123–34128
- Orru S, Caputo I, D'Amato A, Ruoppolo M, Esposito C (2003)
 Proteomics identification of acyl-acceptor and acyl-donor substrates for transglutaminase in a human intestinal epithelial cell
 line Implications for celiac disease. J Biol Chem 278:31766–
 31773
- Ostergaard H, Tachibana C, Winther JR (2004) Monitoring disulfide bond formation in the eukaryotic cytosol. J Cell Biol 166:337– 345
- Park KS, Han BG, Lee KH, Kim DS, Kim JM, Jeon H, Kim HS, Suh SW, Lee EH, Kim SY, Lee BI (2009) Depletion of nucleophosmin via transglutaminase 2 cross-linking increases drug resistance in cancer cells. Cancer Lett 274:201–207
- Peng X, Zhang Y, Zhang H, Graner S, Williams JF, Levitt ML, Lokshin A (1999) Interaction of tissue transglutaminase with nuclear transport protein importin-alpha3. FEBS Lett 446:35–39
- Piacentini M, Farrace MG, Piredda L, Matarrese P, Ciccosanti F, Falasca L, Rodolfo C, Giammarioli AM, Verderio E, Griffin M, Malorni W (2002) Transglutaminase overexpression sensitizes neuronal cell lines to apoptosis by increasing mitochondrial membrane potential and cellular oxidative stress. J Neurochem 81:1061–1072
- Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5:e327
- Piredda L, Amendola A, Colizzi V, Davies PJ, Farrace MG, Fraziano M, Gentile V, Uray I, Piacentini M, Fesus L (1997) Lack of 'tissue' transglutaminase protein cross-linking leads to leakage of macromolecules from dying cells: relationship to development of autoimmunity in MRLIpr/Ipr mice. Cell Death Differ 4:463–472
- Piredda L, Farrace MG, Lo Bello M, Malorni W, Melino G, Petruzzelli R, Piacentini M (1999) Identification of 'tissue' transglutaminase binding proteins in neural cells committed to apoptosis. FASEB J 13:355–364
- Rebe C, Raveneau M, Chevriaux A, Lakomy D, Sberna AL, Costa A, Bessede G, Athias A, Steinmetz E, Lobaccaro JM, Alves G, Menicacci A, Vachenc S, Solary E, Gambert P, Masson D (2009) Induction of transglutaminase 2 by a liver X receptor/retinoic acid receptor alpha pathway increases the clearance of apoptotic cells by human macrophages. Circ Res 105:393–401

- Riemer J, Bulleid N, Herrmann JM (2009) Disulfide formation in the ER and mitochondria: two solutions to a common process. Science 324:1284–1287
- Robitaille K, Daviau A, Tucholski J, Johnson GV, Rancourt C, Blouin R (2004) Tissue transglutaminase triggers oligomerization and activation of dual leucine zipper-bearing kinase in calphostin C-treated cells to facilitate apoptosis. Cell Death Differ 11:542–549
- Robitaille K, Daviau A, Lachance G, Couture JP, Blouin R (2008) Calphostin C-induced apoptosis is mediated by a tissue transglutaminase-dependent mechanism involving the DLK/ JNK signaling pathway. Cell Death Differ 15:1522–1531
- Rodolfo C, Mormone E, Matarrese P, Ciccosanti F, Farrace MG, Garofano E, Piredda L, Fimia GM, Malorni W, Piacentini M (2004) Tissue transglutaminase is a multifunctional BH3-only protein. J Biol Chem 279:54783–54792
- Rossi A, Catani MV, Candi E, Bernassola F, Puddu P, Melino G (2000) Nitric oxide inhibits cornified envelope formation in human keratinocytes by inactivating transglutaminases and activating protein 1. J Invest Dermatol 115:731–739
- Ruan Q, Johnson GV (2007) Transglutaminase 2 in neurodegenerative disorders. Front Biosci 12:891–904
- Sarang Z, Molnar P, Nemeth T, Gomba S, Kardon T, Melino G, Cotecchia S, Fesus L, Szondy Z (2005) Tissue transglutaminase (TG2) acting as G protein protects hepatocytes against Fasmediated cell death in mice. Hepatology 42:578–587
- Sarang Z, Madi A, Koy C, Varga S, Glocker MO, Ucker DS, Kuchay S, Chishti AH, Melino G, Fesus L, Szondy Z (2007) Tissue transglutaminase (TG2) facilitates phosphatidylserine exposure and calpain activity in calcium-induced death of erythrocytes. Cell Death Differ 14:1842–1844
- Sarang Z, Toth B, Balajthy Z, Koroskenyi K, Garabuczi E, Fesus L, Szondy Z (2009) Some lessons from the tissue transglutaminase knockout mouse. Amino Acids 36:625–631
- Shin DM, Jeon JH, Kim CW, Cho SY, Kwon JC, Lee HJ, Choi KH, Park SC, Kim IG (2004) Cell type-specific activation of intracellular transglutaminase 2 by oxidative stress or ultraviolet irradiation: implications of transglutaminase 2 in age-related cataractogenesis. J Biol Chem 279:15032–15039
- Shweke N, Boulos N, Jouanneau C, Vandermeersch S, Melino G, Dussaule JC, Chatziantoniou C, Ronco P, Boffa JJ (2008) Tissue transglutaminase contributes to interstitial renal fibrosis by favoring accumulation of fibrillar collagen through TGF-beta activation and cell infiltration. Am J Pathol 173:631–642
- Siegel M, Khosla C (2007) Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacol Ther 115:232–245
- Singh US, Cerione RA (1996) Biochemical effects of retinoic acid on GTP-binding Protein/Transglutaminases in HeLa cells. Stimulation of GTP-binding and transglutaminase activity, membrane association, and phosphatidylinositol lipid turnover. J Biol Chem 271:27292–27298
- Singh US, Erickson JW, Cerione RA (1995) Identification and biochemical characterization of an 80 kilodalton GTP-binding/transglutaminase from rabbit liver nuclei. Biochemistry 34:15863–15871
- Skill NJ, Johnson TS, Coutts IG, Saint RE, Fisher M, Huang L, El Nahas AM, Collighan RJ, Griffin M (2004) Inhibition of transglutaminase activity reduces extracellular matrix accumulation induced by high glucose levels in proximal tubular epithelial cells. J Biol Chem 279:47754–47762
- Smethurst PA, Griffin M (1996) Measurement of tissue transglutaminase activity in a permeabilized cell system: its regulation by Ca2+ and nucleotides. Biochem J 313(Pt 3):803–808
- Stephens P, Grenard P, Aeschlimann P, Langley M, Blain E, Errington R, Kipling D, Thomas D, Aeschlimann D (2004) Crosslinking and G-protein functions of transglutaminase 2

- contribute differentially to fibroblast wound healing responses. J Cell Sci 117:3389–3403
- Szondy Z, Sarang Z, Molnar P, Nemeth T, Piacentini M, Mastroberardino PG, Falasca L, Aeschlimann D, Kovacs J, Kiss I, Szegezdi E, Lakos G, Rajnavolgyi E, Birckbichler PJ, Melino G, Fesus L (2003) Transglutaminase 2—/— mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells. Proc Natl Acad Sci USA 100:7812–7817
- Szondy Z, Mastroberardino PG, Varadi J, Farrace MG, Nagy N, Bak I, Viti I, Wieckowski MR, Melino G, Rizzuto R, Tosaki A, Fesus L, Piacentini M (2006) Tissue transglutaminase (TG2) protects cardiomyocytes against ischemia/reperfusion injury by regulating ATP synthesis. Cell Death Differ 13:1827–1829
- Takahashi H, Isobe T, Horibe S, Takagi J, Yokosaki Y, Sheppard D, Saito Y (2000) Tissue transglutaminase, coagulation factor XIII, and the pro-polypeptide of von Willebrand factor are all ligands for the integrins alpha 9beta 1 and alpha 4beta 1. J Biol Chem 275:23589–23595
- Takeuchi Y, Birckbichler PJ, Patterson MK Jr, Lee KN (1992) Putative nucleotide binding sites of guinea pig liver transglutaminase. FEBS Lett 307:177–180
- Takeuchi Y, Ohashi H, Birckbichler PJ, Ikejima T (1998) Nuclear translocation of tissue type transglutaminase during sphingosineinduced cell death: a novel aspect of the enzyme with DNA hydrolytic activity. Z Naturforsch C 53:352–358
- Telci D, Griffin M (2006) Tissue transglutaminase (TG2)—a wound response enzyme. Front Biosci 11:867–882
- Telci D, Wang Z, Li X, Verderio EA, Humphries MJ, Baccarini M, Basaga H, Griffin M (2008) Fibronectin-tissue transglutaminase matrix rescues RGD-impaired cell adhesion through syndecan-4 and beta1 integrin co-signaling. J Biol Chem 283:20937–20947
- Toth B, Garabuczi E, Sarang Z, Vereb G, Vamosi G, Aeschlimann D, Blasko B, Becsi B, Erdodi F, Lacy-Hulbert A, Zhang A, Falasca L, Birge RB, Balajthy Z, Melino G, Fesus L, Szondy Z (2009) Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells. J Immunol 182:2084–2092
- Tucholski J, Johnson GV (2002) Tissue transglutaminase differentially modulates apoptosis in a stimuli-dependent manner. J Neurochem 81:780–791
- Tucholski J, Lesort M, Johnson GV (2001) Tissue transglutaminase is essential for neurite outgrowth in human neuroblastoma SH-SY5Y cells. Neuroscience 102:481–491
- Turano C, Coppari S, Altieri F, Ferraro A (2002) Proteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol 193:154–163
- Verderio E, Nicholas B, Gross S, Griffin M (1998) Regulated expression of tissue transglutaminase in Swiss 3T3 fibroblasts:

- effects on the processing of fibronectin, cell attachment, and cell death. Exp Cell Res 239:119–138
- Verderio EA, Telci D, Okoye A, Melino G, Griffin M (2003) A novel RGD-independent cel adhesion pathway mediated by fibronectin-bound tissue transglutaminase rescues cells from anoikis. J Biol Chem 278:42604–42614
- Verderio EA, Johnson TS, Griffin M (2005) Transglutaminases in wound healing and inflammation. Prog Exp Tumor Res 38:89– 114
- Vezza R, Habib A, FitzGerald GA (1999) Differential signaling by the thromboxane receptor isoforms via the novel GTP-binding protein, Gh. J Biol Chem 274:12774–12779
- Wang DS, Dickson DW, Malter JS (2008) Tissue transglutaminase, protein cross-linking and Alzheimer's disease: review and views. Int J Clin Exp Pathol 1:5–18
- Wu J, Liu SL, Zhu JL, Norton PA, Nojiri S, Hoek JB, Zern MA (2000) Roles of tissue transglutaminase in ethanol-induced inhibition of hepatocyte proliferation and alpha 1-adrenergic signal transduction. J Biol Chem 275:22213–22219
- Xu L, Hynes RO (2007) GPR56 and TG2: possible roles in suppression of tumor growth by the microenvironment. Cell Cycle 6:160–165
- Xu L, Begum S, Hearn JD, Hynes RO (2006) GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci USA 103:9023–9028
- Yi SJ, Choi HJ, Yoo JO, Yuk JS, Jung HI, Lee SH, Han JA, Kim YM, Ha KS (2004) Arachidonic acid activates tissue transglutaminase and stress fiber formation via intracellular reactive oxygen species. Biochem Biophys Res Commun 325:819–826
- Yuan L, Siegel M, Choi K, Khosla C, Miller CR, Jackson EN, Piwnica-Worms D, Rich KM (2007) Transglutaminase 2 inhibitor, KCC009, disrupts fibronectin assembly in the extracellular matrix and sensitizes orthotopic glioblastomas to chemotherapy. Oncogene 26:2563–2573
- Zemskov EA, Janiak A, Hang J, Waghray A, Belkin AM (2006) The role of tissue transglutaminase in cell-matrix interactions. Front Biosci 11:1057–1076
- Zemskov EA, Mikhailenko I, Strickland DK, Belkin AM (2007) Cellsurface transglutaminase undergoes internalization and lysosomal degradation: an essential role for LRP1. J Cell Sci 120:3188–3199
- Zhang J, Lesort M, Guttmann RP, Johnson GV (1998) Modulation of the in situ activity of tissue transglutaminase by calcium and GTP. J Biol Chem 273:2288–2295
- Zhivotovsky B, Galluzzi L, Kepp O, Kroemer G (2009) Adenine nucleotide translocase: a component of the phylogenetically conserved cell death machinery. Cell Death Differ 16:1419– 1425

